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Abstract

MNP is a publicly available R package that �ts the Bayesian multinomial probit model via

Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete

choices made by individuals recorded in survey data. Examples where the multinomial probit

model may be useful include the analysis of product choice by consumers in market research and

the analysis of candidate or party choice by voters in electoral studies. The MNP software can

also �t the model with di�erent choice sets for each individual, and complete or partial individual

choice orderings of the available alternatives from the choice set. The estimation is based on the

e�cient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005).
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1 Introduction

This paper illustrates how to use MNP, a publicly available R (R Development Core Team, 2012)

package, in order to �t the Bayesian multinomial probit model via Markov chain Monte Carlo. The

multinomial probit model is often used to analyze the discrete choices made by individuals recorded

in survey data. Examples where the multinomial probit model may be useful include the analysis

of product choice by consumers in market research and the analysis of candidate or party choice by

voters in electoral studies. The MNP software can also �t the model with di�erent choice sets for each

individual, and complete or partial individual choice orderings of the available alternatives from the

choice set. We use Markov chain Monte Carlo (MCMC) for estimation and computation. In particular,

we use the e�cient marginal data augmentation MCMC algorithm that is developed by Imai and van

Dyk (2005).

MNP can be installed in the same way as other R packages via the install.packages("MNP")

command. Appendix ?? gives instructions for obtaining R and installing MNP on Windows, Mac OS

X, and Linux/UNIX platforms. Only three commands are necessary to use the MNP software; mnp()

�ts the multinomial probit model, summary() summarizes the MCMC output, and predict() gives

posterior prediction based on the �tted model (In addition, coef() and vcov() allow one to extract

the posterior draws of model coe�cients and covariance matrix). To run an example script, start R

and run the following commands:

library(MNP) # loads the MNP package

example(mnp) # runs the example script

Details of the example script are given in Sections 3 and 4. Three appendices describe installation,

the commands, and version history. We begin in Section 2 with a brief description of the multinomial

probit model that MNP is designed to �t.

2 The Method

MNP implements the marginal data augmentation algorithms for posterior sampling in the multinomial

probit model. The MCMC algorithm we implement here is fully described in Imai and van Dyk (2005);

we use Scheme 1 of their Algorithm 1.
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2.1 The Multinomial Probit Model

Suppose we have a dataset of size n with p > 2 choices and k covariates. Here, choices refer to the

number of classes in the multinomial model. The word �choices� is used because the model is often

used to describe how individuals choose among a number of alternatives, e.g., how a voter chooses

which candidate to vote for among four candidates running for a particular o�ce. We focus on the case

when p > 2 because when p = 2, the model reduces to the standard binomial probit model, which can

be �t via the glm(, family = binomial(probit)) command in R. The multinomial probit model

di�ers from the ordinal probit model in that the former does not assume any inherent ordering on

the choices. Thus, although the individuals may have preferences among the available alternatives

these ordering are individual speci�c rather than being characteristics of the alternatives themselves.

The ordinal probit model can be �tted via an MCMC algorithm in R by installing a package called

MCMCpack (?).

Under the multinomial probit model, we assume a multivariate normal distribution on the latent

variables, Wi = (Wi1, . . . ,Wi,p−1).

Wi = Xiβ + ei, ei ∼ N(0,Σ), for i = 1, . . . , n, (1)

where Xi is a (p−1)×k matrix of covariates, β is k×1 vector of �xed coe�cients, ei is (p−1)×1 vector

of disturbances, and Σ is a (p − 1) × (p − 1) positive de�nite matrix. For the model to be identi�ed,

the �rst diagonal element of Σ is constrained, σ11 = 1. Please note that starting with version 2.6-1, we

use the restriction trace(Σ) = p as the default identi�cation strategy following the recommendation of

Burgette and Nordheim (2009). This avoids the arbitrariness of �xing one particular diagonal element.

The response variable, Yi, is the index of the choice of individual i among the alternatives in the choice

set and is modeled in terms of this latent variable, Wi, via

Yi(Wi) =

 0 if max(Wi) < 0

j if max(Wi) = Wij > 0
, for i = 1, . . . , n, and j = 1, . . . , p− 1, (2)

where Yi equal to 0 corresponds to a base category.

The matrix Xi may include both choice-speci�c and individual-speci�c variables. A choice-speci�c

variable is a variable that has a value for each of the p choices, and these p values may be di�erent for

each individual (e.g., the price of a product in a particular region where an individual lives). Choice-

speci�c variables are recorded relative to the baseline choice and thus there are p− 1 recorded values
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for each individual. In this way a choice-speci�c variable is tabulated as a column in Xi. Individual-

speci�c variables, on the other hand, take on a value for each individual, but are constant across the

choices, e.g., the age or gender of the individual. These variables are tabulated via their interaction

with each of the choice indicator variables. Thus, an individual-speci�c variable corresponds to p− 1

columns of Xi and p− 1 components of β.

2.2 The Multinomial Probit Model with Ordered Preferences

In some cases, we observe a complete or partial ordering of p alternatives. For example, we may observe

the preferences of each individual among di�erent brands of a product. We denote the outcome variable

in such situations by Yi = {Yi1, . . . ,Yip} where i = 1, . . . , n indexes individuals and j = 1, . . . , p

represent alternatives. If Yij > Yij′ for some j ̸= j′, we say j is preferred to j′. If Yij = Yij′ for

some j ̸= j′, we say individual i is indi�erent to the choice between alternatives j and j′, but treat

the data as if the actual ordering is unknown. In other words, formally we insist on strict inequalities

among the preferences, but allow for some inequalities to be unobserved. The preference ordering is

assumed to satisfy the usual axioms of preference comparability. Namely, preference is connected: For

any j and j′, either Yij ≤ Yij′ or Yij ≥ Yij′ . Preference also must be transitive: for any j,j′, and j′′,

Yij ≤ Yij′ and Yij′ ≤ Yij′′ imply Yij ≤ Yij′′ . For notational simplicity and without loss of generality,

we assume that Yij takes an integer value ranging from 0 to p − 1. We emphasize that we have not

changed the model from Section 2.1. Rather, we simply have more observed data: the index of the

choice of the individual i, Yi, can be computed from Yi. Thus, we continue to model the preference

ordering, Yi, in terms of a latent (multivariate normal) random vector, Wi = (Wij , . . . ,Wi,p−1), via

Yij(Wi) = #{Wij′ : Wij′ < Wij} for i = 1, . . . , n, and j = 1, . . . , p, (3)

where Wip = 0, the distribution of Wi is speci�ed in equation 1, and #{· · · } indicates the number

of elements in a �nite set. This model can be �tted via a slightly modi�ed version of the MCMC

algorithm in Imai and van Dyk (2005). In particular, we need only modify the way in which Wij is

sampled and use a truncation rule based on Equation 3.

2.3 Prior Speci�cation

Our prior distribution for the multinomial probit model is

β ∼ N(0, A−1) and p(Σ) ∝ |Σ|−(ν+p)/2
[
trace(SΣ−1)

]−ν(p−1)/2
, (4)
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where A is the prior precision matrix of β, ν is the prior degrees of freedom parameter for Σ, and the

(p−1)× (p−1) positive de�nite matrix S is the prior scale for Σ; we assume the �rst diagonal element

of S is one. The prior distribution on Σ is proper if ν ≥ p− 1, the prior mean of Σ is approximately

equal to S if ν > p − 2, and the prior variance of Σ increase as ν decreases as long as this variance

exists. We also allow for an improper prior on β, which is p(β) ∝ 1 (i.e., A = 0).1

Alternate prior speci�cations were introduced by McCulloch and Rossi (1994) and McCulloch et al.

(2000). The relative advantage of the various prior distributions are discussed by McCulloch et al.

(2000), Nobile (2000), and Imai and van Dyk (2005). We prefer our choice because it allows us to

directly specify the prior distribution on the identi�able model parameters, allows us to specify an

improper prior distribution on regression coe�cient, and results in a Monte Carlo sampler that is

relatively quick to converge. An implementation of of the sampler proposed by McCulloch and Rossi

(1994) has recently been released in the R package bayesm (Rossi and McCulloch, 2005).

2.4 Prediction under the Multinomial Probit Model

Predictions of individual preferences given particular values of the covariates can be useful in inter-

preting the �tted model. Consider a value of the (p−1)×k matrix of covariates, X⋆, that may or may

not correspond to the values for one of the observed individuals. We are interested in the distribution

of the preferences among the alternatives in the choice set given this value of the covariates. Let Y ⋆

be the preferred choice and Y⋆ = (Y⋆
1 , . . . ,Y⋆

p ) indicate the ordering of the preferences among the

available alternatives. As an example, one might be interested in Pr(Y ⋆ = j | X⋆) for some j. By

varying X⋆, one could explore how preferences are expected to change with covariates. Similarly, one

might be interested in how relative preferences such as Pr(Y⋆
j > Y⋆

j′ | X⋆) are expected to change with

the covariates.

In the context of a Bayesian analysis, such predictive probabilities are computed via the posterior

predictive distribution. This distribution conditions on the observed data, Y = (Y1, . . . , Yn) or Y =

(Y1, . . . ,Yn), but averages over the uncertainty in the model parameters. For example,

Pr(Y ⋆ = j | X⋆, Y ) =

∫
Pr(Y ⋆ = j | X⋆, β,Σ, Y ) p(β,Σ | Y ) d(β,Σ). (5)

Thus, the posterior predictive distribution accounts for both variability in the response variable given

1Algorithm 2 of Imai and van Dyk (2005) allows for a non zero prior mean for β. Because the update for Σ in this

sampler is not exactly its complete conditional distribution, however, this algorithm may exhibit undesirable convergence

properties in some situations.
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the model parameters (i.e., the likelihood or sampling distribution) and the uncertainty in the model

parameters as quanti�ed in the posterior distribution. Monte Carlo evaluation of the posterior pre-

dictive distribution is easy once we obtain a Monte Carlo sample of the model parameters from the

posterior distribution: We simply sample according to the likelihood for each Monte Carlo sample

from the posterior distribution. This involves sampling the latent variable under the model in (1) and

computing the preferred choice using (2) or the ordering of preferences using (3).

3 Example 1: Detergent Brand Choice

In this and the next section, we describe the details of two examples of MNP. In this section we use a

market research dataset to illustrate the �tting of the multinomial probit model. In Section 4 we �t

the multinomial probit model with ordered preference to a Japanese election dataset. We also describe

how to perform convergence diagnostics of the MCMC sampler and analysis of the Monte Carlo output

of MNP using an existing R package. Additional examples of MNP can be found in Imai and van Dyk

(2005).

3.1 Preliminaries

Our �rst example analyzes a typical dataset in market research. The dataset contains information

about the brand and price of the laundry detergent purchased by 2657 households originally analyzed

by Chintagunta and Prasad (1998). The dataset contains the log prices of six detergent brands �

Tide, Wisk, EraPlus, Surf, Solo, and All � as well as the brand chosen by each household (Type

help(detergent) in R for details about the dataset).

We �t the multinomial probit model by using choice as the outcome variable and the other six

variables as choice-speci�c covariates. After loading the MNP package, this can be accomplished using

the following three commands,

data(detergent)

res <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 10000,

burnin = 2000, thin = 3, verbose = TRUE)

summary(res)

The �rst command loads the example dataset and stores it as the data frame called detergent. The

second command �ts the multinomial probit model. The default base category in this case is All. (The
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default base category in MNP is the �rst factor level of the outcome variable, Y .) Each household

chooses among the six brands of laundry detergent, i.e., p = 6. We specify the choice-speci�c variables,

choiceX, using a named list. The elements of the list are the log price of each detergent brand and

they are named after the levels of factor variable, choice. We also name the coe�cient for this set of

choice-speci�c variables by using cXnames. The argument data allows us to specify the name of the

data frame where the data are stored. The model estimates �ve intercepts and the price coe�cient as

well as 14 parameters in the covariance matrix, Σ.

We use the default prior distribution; an improper prior distribution for β and a di�use prior

distribution for Σ with ν = p = 6 and S = I. We sample 10,000 replications of the parameter from

the resulting posterior distribution, saving every fourth sample after discarding the �rst 2,000 samples

as speci�ed by the arguments, n.draws, thin, and burnin. The argument verbose = TRUE speci�es

that a progress report and other useful messages be printed while the MCMC sampler is running. The

summary(res) command gives a summary of the output including the posterior means and standard

deviations of the parameters. The summary is based on the single MCMC chain produced with this

call of MNP. Before we can reliably draw conclusions based on these results, we must be sure the chain

has converged. Convergence diagnostics are discussed and illustrated in Section 3.2. The result of the

call of summary(res) are as follows.

Call:

mnp(formula = choice ~ 1, data = detergent, choiceX = list(Surf = SurfPrice,

Tide = TidePrice, Wisk = WiskPrice, EraPlus = EraPlusPrice,

Solo = SoloPrice, All = AllPrice), cXnames = c("price"),

n.draws = 10000, burnin = 2000, thin = 3, verbose = TRUE)

Coefficients:

mean std.dev. 2.5% 97.5%

(Intercept):EraPlus 2.567 0.238 2.123 3.03

(Intercept):Solo 1.722 0.247 1.248 2.25

(Intercept):Surf 1.572 0.163 1.259 1.91

(Intercept):Tide 2.716 0.252 2.269 3.22

(Intercept):Wisk 1.620 0.162 1.328 1.96

price -82.102 8.952 -99.896 -66.32

Covariances:

mean std.dev. 2.5% 97.5%

EraPlus:EraPlus 1.00000 0.00000 1.00000 1.00

EraPlus:Solo 0.82513 0.26942 0.31029 1.36

EraPlus:Surf 0.17021 0.16115 -0.15810 0.48
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EraPlus:Tide 0.24872 0.12956 0.00253 0.52

EraPlus:Wisk 0.88170 0.16614 0.54500 1.20

Solo:Solo 2.56481 0.68678 1.53276 4.25

Solo:Surf 0.45246 0.34572 -0.28018 1.13

Solo:Tide 0.50836 0.32706 -0.09069 1.22

Solo:Wisk 1.46997 0.44596 0.65506 2.45

Surf:Surf 1.69005 0.50978 0.92334 2.82

Surf:Tide 0.80762 0.30381 0.34019 1.44

Surf:Wisk 1.01614 0.36503 0.44121 1.85

Tide:Tide 1.32024 0.41669 0.62898 2.25

Tide:Wisk 1.05396 0.30137 0.59323 1.74

Wisk:Wisk 2.58761 0.55076 1.68773 3.82

Base category: All

Number of alternatives: 6

Number of observations: 2657

Number of stored MCMC draws: 2000

We emphasize that these results are preliminary because convergence has not yet been assessed. Thus,

we delay interpretation of the �t until Section 3.3, after we discuss convergence diagnostics in Sec-

tion 3.2. Note that coef(res) and vcov(res) allow one to extract the posterior draws of model

coe�cients and covariance matrix if desired. Type help(mnp) in R for details.

3.2 Using coda for Convergence Diagnostics and Output Analysis

It is possible to use coda (Plummer, Best, Cowles, and Vines, 2005), to perform various convergence

diagnostics, as well as to summarize results. The coda package requires a matrix of posterior draws for

relevant parameters to be saved as an mcmc object. Here, we illustrate how to use coda to calculate the

Gelman-Rubin convergence diagnostic statistic (Gelman and Rubin, 1992). This diagnostic is based

on multiple independent Markov chains initiated at over-dispersed starting values. Here, we obtain

these chains by independently running the mnp() command three times, specifying di�erent starting

values for each time. This can be accomplished by typing the following commands at the R prompt,

data(detergent)

res1 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

res2 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,
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Solo=SoloPrice, All=AllPrice),

coef.start = c(1, -1, 1, -1, 1, -1)*10,

cov.start = matrix(0.5, ncol=5, nrow=5) + diag(0.5, 5),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

res3 <- mnp(choice ~ 1, choiceX = list(Surf=SurfPrice, Tide=TidePrice,

Wisk=WiskPrice, EraPlus=EraPlusPrice,

Solo=SoloPrice, All=AllPrice),

coef.start=c(-1, 1, -1, 1, -1, 1)*10,

cov.start = matrix(0.9, ncol=5, nrow=5) + diag(0.1, 5),

cXnames = c("price"), data = detergent, n.draws = 50000,

verbose = TRUE)

where we save the output of each chain separately as res1, res2, and res3. The �rst chain is initiated

at the default starting values for all parameters; i.e., a vector of zeros for β and an identity matrix for

Σ. The second chain is run starting from a vector of three 10's and three −10's for β and a matrix

with all diagonal elements equal to 1 and all correlations equal to 0.5 for Σ. Finally, the third chain

is run starting from a permutation of the starting value used for β in the second chain, and a matrix

with all diagonal elements equal to 1 and all correlations equal to 0.9 for Σ. We again use the default

prior speci�cation and obtain 50,000 draws for each chain.

We store the output from each of the three chains as an object of class mcmc, and then combine

them into a single list using the following commands,

library(coda)

res.coda <- mcmc.list(chain1=mcmc(res1$param[,-7]),

chain2=mcmc(res2$param[,-7]),

chain3=mcmc(res3$param[,-7]))

where the �rst command loads the coda package2 and the second command saves the results as an

object of class mcmc.list, which is called res.coda. We exclude the 7th column of each chain, because

this column corresponds to the �rst diagonal element of the covariance matrix which is always equal

to 1. The following command computes the Gelman-Rubin statistic from these three chains,

gelman.diag(res.coda, transform = TRUE)

where transform = TRUE applies log or logit transformation as appropriate to improve the normality

of each of the marginal distributions. Gelman et al. (2004) suggest computing the statistic for each

2If you have not used the coda package before, you must install it. At the R prompt, type install.packages("coda").
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scalar estimate of interest, and to continue to run the chains until the statistics are all less than 1.1.

Inference is then based on the Monte Carlo sample obtained by combining the second half of each of the

chains. The output of the coda command lists the value and a 97.5% upper limit of the Gelman-Rubin

statistic for each parameter.

Potential scale reduction factors:

Point est. 97.5% quantile

(Intercept):EraPlus 1.01 1.02

(Intercept):Solo 1.03 1.08

(Intercept):Surf 1.01 1.05

(Intercept):Tide 1.01 1.02

(Intercept):Wisk 1.01 1.04

price 1.01 1.02

EraPlus:Solo 1.02 1.03

EraPlus:Surf 1.02 1.04

EraPlus:Tide 1.03 1.08

EraPlus:Wisk 1.04 1.13

Solo:Solo 1.01 1.04

Solo:Surf 1.01 1.02

Solo:Tide 1.02 1.07

Solo:Wisk 1.00 1.00

Surf:Surf 1.00 1.00

Surf:Tide 1.01 1.04

Surf:Wisk 1.02 1.06

Tide:Tide 1.02 1.06

Tide:Wisk 1.02 1.08

Wisk:Wisk 1.01 1.04

Multivariate psrf

1.07+0i

The Gelman-Rubin statistics are all less than 1.1, suggesting satisfactory convergence has been achieved.

(Note that the 97.5conservative user might want to obtain a set of longer Markov chains and recom-

pute the Gelman-Rubin statistics.) It may also be useful to examine the change in the value of the

Gelman-Rubin statistic over the iterations. The following commands produce a graphical summary of

the progression of the statistics over iterations.

gelman.plot(res.coda, transform = TRUE, ylim = c(1,1.2))

where ylim = c(1,1.2) speci�es the range of the vertical axis of the plot. The results appear in

Figure 1, as a cumulative evaluation of the Gelman-Rubin statistic over iterations for nine selected
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parameters. (Three coe�cients appear in the �rst row; three covariance parameters appear in the

second row; and three variance parameters appear in the third row.)

The coda package can also be used to produce univariate time-series plots of the three chains and

univariate density estimate of the posterior distribution. The following commands create these graphs

for the price coe�cient.

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000, "price"], start=25001),

chain2=mcmc(res2$param[25001:50000, "price"], start=25001),

chain3=mcmc(res3$param[25001:50000, "price"], start=25001))

plot(res.coda, ylab = "price coefficient")

Figure 2 presents the resulting plots. The left panel overlays the time-series plot for each chain with a

di�erent color representing each chain. The right panel shows the kernel-smoothed density estimate of

the posterior distribution. One can also apply an array of other functions to res.coda. See the coda

homepage, http://www-�s.iarc.fr/coda, for details.

3.3 Final Analysis and Conclusions

In the �nal analysis, we combine the second half of each of the three chains. This is accomplished

using the following command that saves the last 25,000 draws from each chain as an mcmc object and

combines the mcmc objects into a list,

res.coda <- mcmc.list(chain1=mcmc(res1$param[25001:50000,-7], start=25001),

chain2=mcmc(res2$param[25001:50000,-7], start=25001),

chain3=mcmc(res3$param[25001:50000,-7], start=25001))

summary(res.coda)

The second command produces the following summary of the posterior distribution for each pa-

rameter based on the combined Monte Carlo sample.

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 3

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept):EraPlus 2.5398 0.2300 0.0008400 0.014332

(Intercept):Solo 1.7218 0.2227 0.0008131 0.012972

11

http://www-fis.iarc.fr/coda


0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

(Intercept):EraPlus

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

(Intercept):Solo

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

price

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

EraPlus:Surf

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

Solo:Tide

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

Surf:Wisk

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

Solo:Solo

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

Surf:Surf

0 20000 40000

1.
00

1.
10

1.
20

last iteration in chain

sh
rin

k 
fa

ct
or

Tide:Tide

Figure 1: The Gelman-Rubin Statistic Computed with Three Independent Markov Chains for Selected
Parameters in the Detergent Example. The �rst row represents three coe�cients, the second row
represents three covariances, and the third row represents three variance parameters.
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Figure 2: Time-series Plot of Three Independent Markov Chains (Left Panel) and A Density Estimate
of the Posterior Distribution of the Price Coe�cient (Right Panel). The time-series plot overlays the
three chains, each in a di�erent color. A lowess smoothed line is also plotted for each of the three
chains. The density estimate is based on all three chains.

(Intercept):Surf 1.5634 0.1663 0.0006072 0.010462

(Intercept):Tide 2.6971 0.2374 0.0008670 0.015153

(Intercept):Wisk 1.6155 0.1594 0.0005822 0.010221

price -80.9097 8.4292 0.0307791 0.556483

EraPlus:Solo 0.8674 0.2954 0.0010787 0.021698

EraPlus:Surf 0.1226 0.1991 0.0007269 0.014043

EraPlus:Tide 0.2622 0.1525 0.0005568 0.009833

EraPlus:Wisk 0.9062 0.1912 0.0006982 0.012893

Solo:Solo 2.6179 0.7883 0.0028785 0.055837

Solo:Surf 0.5348 0.4307 0.0015728 0.030113

Solo:Tide 0.5570 0.3544 0.0012941 0.024548

Solo:Wisk 1.5442 0.4643 0.0016954 0.031574

Surf:Surf 1.6036 0.4758 0.0017374 0.031269

Surf:Tide 0.7689 0.2992 0.0010926 0.020253

Surf:Wisk 0.9949 0.3548 0.0012955 0.022963

Tide:Tide 1.2841 0.3660 0.0013364 0.024095

Tide:Wisk 1.0658 0.3147 0.0011492 0.020229

Wisk:Wisk 2.5801 0.5523 0.0020167 0.034974

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept):EraPlus 2.09105 2.38514 2.5321 2.6926 3.0022

(Intercept):Solo 1.28315 1.57316 1.7219 1.8705 2.1639

(Intercept):Surf 1.24132 1.45272 1.5583 1.6701 1.9023

(Intercept):Tide 2.23562 2.53443 2.6886 2.8544 3.1721
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(Intercept):Wisk 1.31120 1.50841 1.6104 1.7191 1.9429

price -97.62406 -86.61736 -80.7783 -75.1013 -64.9720

EraPlus:Solo 0.32811 0.65755 0.8480 1.0694 1.4666

EraPlus:Surf -0.24159 -0.01596 0.1131 0.2507 0.5491

EraPlus:Tide -0.02109 0.16081 0.2571 0.3527 0.5957

EraPlus:Wisk 0.54089 0.77643 0.9035 1.0331 1.2917

Solo:Solo 1.37468 2.02720 2.5225 3.0985 4.4160

Solo:Surf -0.31143 0.25493 0.5251 0.8180 1.3880

Solo:Tide -0.05172 0.30518 0.5297 0.7740 1.3106

Solo:Wisk 0.74682 1.21192 1.5131 1.8380 2.5445

Surf:Surf 0.86883 1.25552 1.5377 1.8834 2.6935

Surf:Tide 0.30606 0.55218 0.7285 0.9413 1.4556

Surf:Wisk 0.40231 0.74907 0.9579 1.1957 1.8026

Tide:Tide 0.69841 1.02206 1.2396 1.4999 2.1100

Tide:Wisk 0.51732 0.84824 1.0411 1.2556 1.7579

Wisk:Wisk 1.60662 2.18760 2.5407 2.9238 3.7722

The output shows the mean, standard deviation, and various percentiles of the posterior distribu-

tions of the coe�cients and the elements of the variance-covariance matrix. The base category is the

detergent All. Separate intercepts are estimated for each detergent. The price coe�cient is negative

and highly statistically signi�cant, agreeing with the standard economic expectation that consumers

are less likely to buy more expensive goods.

MNP also allows one to calculate the posterior predictive probabilities of each alternative being

most preferred given a particular value of the covariates. For example, one can calculate the posterior

predictive probabilities using the covariate values of the �rst two observations by using the predict()

command,

predict(res1, newdata = detergent[1:2,],

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where res1 is the output object from the mnp() command, and we set newdata to the �rst two

observations of the detergent data set and newdraw to the combined draws from the second half of

three chains. Setting type = "prob" causes the function predict() to return the posterior predictive

probabilities. Moreover, a new n.draws option in predict() command allows one to compute the

uncertainty estimates about these predicted probabilities. It is also possible to return a Monte Carlo

sample of the the alternative that is most preferred (type = "choice"), a Monte Carlo sample of the

latent variables (type = "latent"), or a Monte Carlo sample of the preference-ordered alternatives
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(type = "order"). (Type help(predict.mnp) in R for more details about the predict() function in

MNP.) The above command yields the following output,

All EraPlus Solo Surf Tide Wisk

[1,] 0.01281333 0.1946400 0.12292 0.46208000 0.1401733 0.06737333

[2,] 0.04649333 0.1262133 0.05996 0.03169333 0.3589867 0.37665333

The result indicates that the posterior predictive probability of purchasing Surf is the largest for

households with covariates equal to those in the �rst household in the data set. Under the model,

approximately 46% of such households will purchase Surf. On the other hand, All is the brand

least likely to be purchased by these households. The households with covariates equal to the second

household are most likely to buy Wisk. Also, they are almost equally likely to purchase Tide. (The

posterior predictive probabilities of buying Wisk and Tide are both around 0.35)

4 Example 2: Voters' Preference of Political Parties

Our second example illustrates how to �t the multinomial probit model with ordered preferences (see

Section 2.2).

4.1 Preliminaries

We analyze a survey dataset describing the preferences of individual voters in Japan among the political

parties. Political scientists may be interested in using the gender, age and education level of voters to

predict their party preferences (Type help(japan) in R for details about the dataset). The outcome

variable is a vector of relative preferences for each of the four parties, i.e., p = 4. Each of 418 voters is

asked to give a score between 0 and 100 to each party. For example, the �rst voter in the dataset has

the following preferences.

LDP NFP SKG JCP

80 75 80 0

That is, this voter prefers LDP and SKG to NFP and JCP, and between the latter two, she prefers NFP to

JCP. Although LDP and SKG have the same preference, we do not constrain the estimated preferences

to be the same for these two alternatives. Under the Gaussian random utility model, the probability

that the two alternatives having exactly the same preferences is zero. Therefore, inequality constraints

are respected, but equality constraints are not.

Furthermore, we only preserve the ranking, not the relative numerical values. Therefore, the

following coding of the variables, for our purposes, is equivalent to that given above,
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LDP NFP SKG JCP

3 2 3 1

Finally, it is possible to have non-response for one of the categories; e.g., no candidate from a particular

party may run in a certain district. If NFP = NA, we have no information about the relative ranking

of NFP.

LDP NFP SKG JCP

3 NA 3 1

In this case, there is no constraint when estimating the preference for this alternative; only the in-

equality constraint, (LDP, SKG) > JCP, is imposed.

All three covariates � gender, education, and age of voters � are individual-speci�c variables rather

than choice-speci�c ones. The model estimates three intercepts and 9 coe�cients along with 6 param-

eters in the covariance matrix. The following commands �t the model,

data(japan)

res <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

n.draws = 10000, verbose = TRUE)

summary(res)

The �rst command loads the dataset, and the second command �ts the model. The base category

is JCP, which is the last column of the outcome matrix. The default prior distribution is used as in

the previous example: an improper prior distribution for β and a di�use prior distribution for Σ with

ν = p = 4 and S = I. 10,000 draws are obtained with no burnin or thinning. The �nal command

summarizes the Monte Carlo sample and gives the following output,

Call:

mnp(formula = cbind(LDP, NFP, SKG, JCP) ~ gender + education + age,

data = japan, n.draws = 10000, verbose = TRUE)

Coefficients:

mean std.dev. 2.5% 97.5%

(Intercept):LDP 0.615184 0.517157 -0.386151 1.61

(Intercept):NFP 0.689753 0.568109 -0.419521 1.79

(Intercept):SKG 0.133961 0.455960 -0.758883 1.02

gendermale:LDP 0.099748 0.152323 -0.194786 0.40

gendermale:NFP 0.216824 0.166103 -0.102108 0.54

gendermale:SKG 0.132661 0.134605 -0.127145 0.40

education:LDP -0.107038 0.074792 -0.253483 0.04
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education:NFP -0.107222 0.082324 -0.270127 0.05

education:SKG -0.003728 0.066429 -0.132496 0.13

age:LDP 0.013518 0.006122 0.001492 0.03

age:NFP 0.006948 0.006783 -0.006572 0.02

age:SKG 0.009653 0.005431 -0.000812 0.02

Covariances:

mean std.dev. 2.5% 97.5%

LDP:LDP 1.0000 0.0000 1.0000 1.00

LDP:NFP 1.0502 0.0585 0.9373 1.16

LDP:SKG 0.7070 0.0622 0.5822 0.82

NFP:NFP 1.4068 0.1359 1.1682 1.70

NFP:SKG 0.7452 0.0864 0.5800 0.91

SKG:SKG 0.6913 0.0874 0.5296 0.87

Base category: JCP

Number of alternatives: 4

Number of observations: 418

Number of stored MCMC draws: 10000

4.2 Convergence Diagnostics, Final Analysis, and Conclusions

In order to evaluate convergence of the MCMC sampler, we again obtain three independent Markov

chains by running the mnp() command three times with three sets of di�erent starting values. We

use starting values that are relatively dispersed given the preliminary analysis of the previous section.

Note that when �tting the multinomial probit model with ordered preferences, the algorithm requires

the starting values of the latent variable to respect the order constraints of equation (3). Therefore,

the starting values of the parameters cannot be too far away from the posterior mode. The following

commands �ts the model with the default starting value and two sets of overdispersed starting values,

res1 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

n.draws = 50000, verbose = TRUE)

res2 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

coef.start = c(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1),

cov.start = matrix(0.5, ncol=3, nrow=3) + diag(0.5, 3),

n.draws = 50000, verbose = TRUE)

res3 <- mnp(cbind(LDP, NFP, SKG, JCP) ~ gender + education + age, data = japan,

coef.start = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),

cov.start = matrix(0.9, ncol=3, nrow=3) + diag(0.1, 3),

n.draws = 50000, verbose = TRUE)
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We follow the commands used in Section 3.2 and compute the Gelman-Rubin statistic for each pa-

rameter. Upon examination of the resulting statistics, we determined that satisfactory convergence

has been achieved. For example, the value of the Gelman-Rubin statistic is less than 1.01 for all the

parameters. Hence, we base our �nal analysis on the combined draws from the second half of the three

chains (i.e., a total of 75,000 draws using 25,000 draws from each chain). Posterior summaries can be

obtained using the coda package as before,

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 3

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept):LDP 0.60167 0.51421 1.88e-03 8.05e-03

(Intercept):NFP 0.68294 0.56867 2.08e-03 7.95e-03

(Intercept):SKG 0.12480 0.45680 1.67e-03 7.25e-03

gendermale:LDP 0.10668 0.15448 5.64e-04 2.95e-03

gendermale:NFP 0.22240 0.16983 6.20e-04 2.91e-03

gendermale:SKG 0.13897 0.13753 5.02e-04 2.70e-03

education:LDP -0.10517 0.07643 2.79e-04 1.35e-03

education:NFP -0.10634 0.08448 3.08e-04 1.28e-03

education:SKG -0.00258 0.06766 2.47e-04 1.18e-03

age:LDP 0.01361 0.00617 2.25e-05 9.90e-05

age:NFP 0.00698 0.00680 2.48e-05 1.01e-04

age:SKG 0.00972 0.00547 2.00e-05 9.13e-05

LDP:NFP 1.05535 0.05508 2.01e-04 1.15e-03

LDP:SKG 0.71199 0.06125 2.24e-04 1.59e-03

NFP:NFP 1.41860 0.13540 4.94e-04 2.45e-03

NFP:SKG 0.75391 0.08262 3.02e-04 2.12e-03

SKG:SKG 0.70007 0.08488 3.10e-04 2.16e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept):LDP -0.405757 0.25198 0.60033 0.9476 1.6172

(Intercept):NFP -0.428421 0.30016 0.68058 1.0657 1.7981

(Intercept):SKG -0.769018 -0.18476 0.12335 0.4303 1.0258

gendermale:LDP -0.197199 0.00328 0.10643 0.2105 0.4096

gendermale:NFP -0.110730 0.10856 0.22135 0.3361 0.5566

gendermale:SKG -0.131661 0.04702 0.13905 0.2307 0.4096

education:LDP -0.254631 -0.15718 -0.10519 -0.0533 0.0447
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education:NFP -0.271657 -0.16329 -0.10654 -0.0496 0.0595

education:SKG -0.135829 -0.04833 -0.00248 0.0429 0.1306

age:LDP 0.001591 0.00941 0.01361 0.0177 0.0257

age:NFP -0.006336 0.00240 0.00697 0.0115 0.0203

age:SKG -0.000947 0.00603 0.00967 0.0134 0.0206

LDP:NFP 0.944577 1.01919 1.05564 1.0924 1.1623

LDP:SKG 0.587135 0.67120 0.71364 0.7544 0.8266

NFP:NFP 1.181667 1.32454 1.40803 1.5028 1.7125

NFP:SKG 0.590798 0.69778 0.75463 0.8104 0.9125

SKG:SKG 0.538858 0.64219 0.69806 0.7564 0.8711

Here, one of the �ndings is that older voters tend to prefer LDP as indicated by the statistically

signi�cant positive age coe�cient for LDP. This is consistent with the conventional wisdom of Japanese

politics that the stronghold of LDP is elderly voters.

To further investigate the marginal e�ect of age, we calculate the posterior predictive probabilities

of party preference under two scenarios. First, we choose the 10th individual in the survey data and

compute the predictive probability that a voter with this set of covariates prefers each of the parties.

This can be accomplished by the following commands,

japan10a <- japan[10,]

predict(res1, newdata = japan10a,

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where the �rst command extracts the 10th observation from the Japan data, and the second command

computes the predictive probabilities. Note that this individual has the following attributes,

gender education age

male 4 50

The resulting posterior predictive probabilities of being the most preferred party are,

JCP LDP NFP SKG

[1,] 0.107707 0.359267 0.324613 0.208413

The result indicates that under the model, we should expect 36% of voters with these covariates

to prefer LDP, 32% to prefer NFP, 21% to prefer SKG, and 11% to prefer JCP. Next, we change the

value of the age variable of this voter from 50 to 75, while holding the other variables constant. We

then recompute the posterior predictive probabilities and examine how they change. This can be

accomplished using the following commands,
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japan10b <- japan10a

japan10b[,"age"] <- 75

predict(res1, newdata = japan10b,

newdraw = rbind(res1$param[25001:50000,],

res2$param[25001:50000,],

res3$param[25001:50000,]), type = "prob")

where the �rst two commands recode the age variable for the voter and the second command makes

the prediction. We obtain the following results,

JCP LDP NFP SKG

[1,] 0.06548 0.485467 0.249667 0.199387

The comparison of the two results shows that changing the value of the age variable from 50 to 75

increases the estimated posterior predictive probability of preferring LDP most and by more than 10

percentage points. Interestingly, the predictive probability for SKG changes very little, while that of

NFP decreases signi�cantly. This suggests that older voters tend to prefer LDP over NFP.
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